本文將針對SiC MOS產品在驅動設計時遇到的寄生導通問題做出詳細的分析,從元器件以及應用層面給出一些設計建議,并結合閾值電壓的漂移問題做出簡單的說明。設計者在實際應用時,需要根據產品的本身定位在二者之間做一個平衡。
寄生導通產生機理
以下主要探討關于SiC器件驅動回路設計的要點,而如何選擇合適的門極驅動電壓也是整個驅動器設計的關鍵。對于開通來說,通常選擇門極15V或18V作為門限值,從而可以配置為具有較好的載流能力或者具有很好的短路耐用性。對于關斷來說,通常使用負電壓關斷最為保險,可以有效的保證可靠關斷,減少誤觸發的機率。
對門極的電容反饋有可能會導致半導體器件產生誤導通動作。而如果使用的是SiC器件,那么通常需要考慮米勒電容所帶來的電容反饋。由米勒效應帶來的電容反饋可能會導致管子的誤動作,更有甚者可能導致上下管直通,引起短路現象的發生,以至損壞功率器件,其產生的具體機理可參考下圖:

在半橋電路拓撲應用中,當低邊開關Q2導通時,高邊開關Q1的電壓變化dVDS/dt。因此,形成了對上管的寄生電容Cgd的充電電流iT。該電流通過米勒電梯Cgd,門極電阻以及電容Cgs形成回路,并對Cgd進行充電 (電容Cgd和Cgs形成一個對VDS進行分壓的電容分壓器)。當在門極電阻上的電壓降超過了上管Q1的閾值開啟電壓,這時候就發生了所謂的米勒導通或者米勒效應。在此過程中,不斷上升的漏極電位通過米勒電容Cgd上拉Q2的門極電壓。然而,門極關斷電阻試圖抵消且拉低電壓。但是如果電阻值不足以降低電壓,那么電壓可能會超過管子的閾值電壓,從而致使誤觸發的可能性,進而導致故障發生。甚至可能損壞SiC器件。
由誤觸發導致事件發生的風險和嚴重程度主要取決于特定的操作條件和測試硬件。高母線電壓,電壓快速上升以及高結溫是比較關鍵的點。這些條件不僅會嚴重地上拉門極電壓,而且會降低閾值。硬件相關的主要影響包括:MOS管內部寄生電容Cgd,Cgs以及門極關斷電阻等。
由Cgd和Cgs電容所引起的寄生電壓會導致門極誤開通的可能性,進而增加整個開關損耗,造成器件損壞風險。參考下圖:

如何減少寄生導通帶來的誤觸發
為了減少器件誤差發的概率,提升產品的可靠性,我們可以從器件層面和應用層面觸發,考慮對應的措施和方法。
A. 從應用層面上考慮
即使有寄生電容帶來的電壓△Vgs,當使用負壓Vgs off來驅動時,可以抵消部分△Vgs ,從而使得△Vgs小于門限電壓Vgs(th)。從而避免誤差發的可能性。
富昌設計小建議:需要綜合考慮MOS管的寄生參數以Vgs 裕量來選擇合適的電壓,以確保產品的可靠性。
使用帶米勒(miller)鉗位的驅動
在設計驅動時,可以考慮采用帶米勒鉗位的驅動產品,從而可以有效鉗制門極電壓,使門極電壓不超過開通閾值電壓,避免誤觸發的風險。
富昌設計小建議:可以根據實際應用需求,選擇帶有米勒鉗位或Desat保護的驅動芯片,從而簡化系統設計。
B.從器件選型上考慮
采用較高開通門限值Vgsth的器件
使用較高開通閾值門限電壓的器件,可以有效低降低誤差發的可能性。
使用合適變容比Cgd/Cgs的器件
通常來說,在器件選型時,可以根據寄生參數,選擇合適變容比的SiC產品,可以有效地降低誤觸發的風險。
一條粗略估算VGS 裕量的經驗方法可供參考,對于600V的SiC產品,最好是選擇變容比大于150。即Cgd/Cgs>150。此時可計算出△Vgs<4V。(注,由于各家工藝技術的不同,門限電壓也不盡相同,所以并不適合所有的產品。此處僅參考英飛凌的產品)
富昌設計小貼士:此處參考的是英飛凌SiC產品,其門限電壓通常在4.5V左右。
VGS 裕量與VGSTH 漂移的平衡
通過上面的計算和分析可知,雖然增加Vgs off負壓可以降低誤觸發的風險,但是也不是越大越好,因為這會帶來門限電壓的漂移,且負壓越大,由此帶來的VGSTH漂移也越大。所以在設計時需要綜合考慮二者,尋求一個合理的平衡點。以下示意圖描述了這一點。

本文主要針對驅動設計時的寄生導通問題做了詳盡的分析和探討。并從器件選型和應用層面上分別給了幾點建議。最后就VGS裕量以及VGSTH漂移做了簡單的闡述,由于二者是對立的,實際應用中需要綜合考慮兩者之間的利弊關系,做出平衡選擇,這樣既能充分發揮SiC器件的特性,又能保證整個產品的可靠性。
(來源:富昌電子)